PINNs

PINNs, for “Physics-Informed Neural Networks”, are a new class of neural networks combining machine learning and physics.

The inventors of PINNs define them as “neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations”.

Indeed, algorithms do not necessarily take into account the physical principles governing the systems to which they are applied. Yet, the behaviour of these systems is dependent on different fields (such as mechanics or thermodynamics) where each has its own laws and models, which constitute a precious source of information.

Consequently, even the most advanced techniques of machine learning are sometimes not very efficient at solving complex scientific and engineering problems.

The idea of PINNs is therefore to “encode” the laws of physics and scientific knowledge into learning algorithms so as to make them more robust and to improve their performance.

According to their inventors, the addition of this crucial information can restrict the field of possible solutions, which would enable the algorithms to aim for the right solution faster and to become better at generalising, meaning to function correctly in the real world, with data that they have never seen before.

PINNs are of interest to the world of research in a wide range of areas including climatology, seismology, or material science.

This approach is also of interest to industry. For example, to create the digital twin of an aeroplane, simulation software using PINNs will take all physical phenomena into account as well as their interactions with one another. It will therefore integrate the rules of aerodynamics and mechanics that make a plane fly, as well as general data throughout its lifecycle.

Read also on Hello Future

décryptage de la lettre de Charles Quint - Cécile Pierrot à la bibliothèque

AI provides a wide range of new tools for historical research

Discover
An individual in a lab coat and protective glasses holds a microprocessor in their gloved hand. The setting is bright and modern, suggesting a research or technology development laboratory.

Algorithmic biases: neural networks are also influenced by hardware

Discover

Multimodal learning / multimodal AI

Discover
Three people are collaborating around a laptop in a modern office environment. One of them, standing, is explaining something to the two seated individuals, who appear attentive. On the table, there is a desktop computer, a tablet, and office supplies. Plants and desks are visible in the background.

FairDeDup limits social biases in AI models

Discover
A woman stands in a train, holding a phone. She is wearing a beige coat and a blue and brown scarf. The interior of the train is bright, with seats and metal support bars.

A mathematical model to help AIs anticipate human emotions

Discover

David Caswell: “All journalists should be trained to use generative AI”

Discover

Health: Jaide aims to reduce diagnostic errors with generative AI

Discover