Cybersecurity: AI attacks and hijacking

● AI and generative AI systems can be easily hijacked to generate malicious code, even when designed to reject such requests.
● Other types of attacks, known as "model evasion attacks," exploit modified inputs to cause unexpected behaviours in AIs, such as making a self-driving car misinterpret traffic signs.
● Poisoned data can introduce backdoors into AI models, leading to unintended behaviours, which is concerning due to the lack of control engineers have over their data sources.

Read also on Hello Future

Rob Wood (Harvard / CETI), deploying a drone in Dominica 

An AI to predict where sperm whales will surface

Discover
A man is crouched on bare ground, holding an object in the air with one hand and a pencil in the other. Next to him, an open laptop suggests he is focused on his outdoor research work.

Geology, geoarchaeology, forensic science: AI reveals history in grains of sand

Discover

Fine-tuning brewing and recipes: how AI can improve the taste of beer

Discover

Flooding: how machine learning can help save lives

Discover
décryptage de la lettre de Charles Quint - Cécile Pierrot à la bibliothèque

AI provides a wide range of new tools for historical research

Discover
An individual in a lab coat and protective glasses holds a microprocessor in their gloved hand. The setting is bright and modern, suggesting a research or technology development laboratory.

Algorithmic biases: neural networks are also influenced by hardware

Discover

Multimodal learning / multimodal AI

Discover