The connected car crosses national borders

The European research project 5GCroCo concerns a relatively unexplored field of communication called “Vehicle-to-Everything” (V2X) — the provision of CCAM (Connected, Cooperative and Automated Mobility) services across national borders.

"The European project aims to provide seamless and harmonised V2X services, from one country to another using mobile networks."

What potential barriers are there to the connected self-driving car? Every year, technological developments in this field bring us closer and closer to the highest level of autonomy — vehicles that can drive themselves, without drivers or passengers. But this progress has a very real limit in the form of national borders. The question of how to provide seamless and harmonised CCAM services from one country to another using the new mobile networks is being explored in depth by the 5G CroCo consortium.

Three use cases, a huge potential for innovation

This European project, itself part of 5G PPP (the 5G Infrastructure Public Private Partnership) Phase 3, involves 24 partners from 7 countries, including carriers, network equipment manufacturers, vehicle manufacturers and suppliers, a motorway operations manager, research institutes and SMEs.

Its research work is divided into five work packages—preparation for trials and test sites, software and network architecture, execution of tests, V2X business potentials and exploitation of results—and three use cases. “The first [use case] concerns tele-operated driving or how to control a vehicle from a remote operation centre”, explains Stefan Wendt, Radio Communications Expert and Senior Project Manager at Orange. “The second focuses on high-definition mapping and investigating how to update maps to reflect the emergence or development of certain parameters along traffic lanes. The final use case is ACCA (Anticipated Cooperative Collision Avoidance), which aims to use the intelligence of the network to transmit alerts from one stationary or broken-down vehicle to others.” To this end, a series of tests is initially being carried out on five small-scale sites, before moving on to real roads, namely two cross-border corridors — between Germany and Luxembourg and Germany and France.

5G, a key technical enabler for ACCA

In the context of this project, Orange’s expertise is particularly valuable in terms of assessing and validating the feasibility of the ACCA use case. Despite the increasing number of in-vehicle sensors (radars, cameras lidars etc.), the vehicles still have a limited awareness of their surroundings and, even more so, a limited ability to detect and anticipate certain dangerous situations. The ACCA use case aims to improve vehicle reactions by facilitating the anticipated detection and localisation of events such as traffic jams or emergency braking. For this, a car must be able to share data via a geoservice embedded in a server that is part of the V2X infrastructure. Facilitated by the 5G network performance, Mobile Edge Computing capabilities and slicing, “the ACCA system relies on both local data processing and cloud computing”, explains Stefan Wendt. “A traffic management system interacts with the various geoservices, while the software architecture allows urgent messages to be issued, for every car in its region of interest, within a 10–20 km radius. We will ultimately be able to manage all vehicles, transmit data, monitor traffic, prioritise tasks and provide local warnings very quickly”.

Here, 5G leverages its potential in URLL (Ultra-Reliable Low-Latency) communication and MEC (Multi-access Edge Computing) to help process data as close as possible to the vehicles and provide real-time signalling.

Focusing on a cross-border context

Although the tests carried out in September 2020 at the TEQMO site in Montlhéry, France, validated the 5G Non StandAlone and software network architecture required, certain questions remain. “We need to concentrate on reality, on the networks as they are now, and therefore look closely at the switch between 4G and 5G networks. We found that the transition between networks in a cross-border context required further fine-tuning and configuration. We also need optimal service continuity and interaction between 5G infrastructures from one side of the border to another. The corresponding service architecture also needs to be fine-tuned so that it is capable of registering messages in different formats”.

These different critical bricks in the service will be analysed and optimised in anticipation of the move from testing to real-life large-scale situations. A testing campaign is planned for 2021 on several sections of private road along the French A320 motorway between Forbach and Saarbrücken. In the meantime, the new generation of mobile networks is already demonstrating its ability to support the use cases linked to CCAM services, thanks in particular to Edge Computing and reliability guarantee mechanisms.

Read also on Hello Future

Traveling Safely in Increasingly Autonomous Driverless Cars


Standalone 5G: An Even More Adaptable Toolbox


6G: preparing today the mobile networks of the future


With 5G, XR experiences increasingly inclusive and accessible to all

Live streaming has become increasingly widespread. With the addition of 5G, this service can be dramatically improved at all levels, including image quality, download times, interruptions and lag. Faced with today’s generations’ enthusiasm for live feeds, researchers are now working to adapt live streaming TV so it can be done on the go. The Goal: Lag-Free Live Streams Getting closer to what’s happening live is one of the main challenges in the field of live streaming. Yet, streaming over the Internet using Wi-Fi or 4G still results in a lag of 30, 40 or even 50 seconds on tablets or smartphones. This lag will particularly hit home for any soccer fans who have ever heard their neighbor watching TV and cheering for a goal they haven’t seen yet. It also affects participants in time-limited interactive TV game shows and televised broadcasts by figures of authority in relation to announcements, alerts or disasters, for example. Ensuring service continuity, particularly when faced with high demand, is another challenge of live streaming. At Orange Innovation, researchers are therefore thinking about how they can make improvements in the field of TV streaming on the go, using a combination of 5G, video streaming technologies (multicast, low latency), network bandwidth allocation (network slicing) and edge computing. Their work has primarily focused on mutualizing streams; a key way of saving bandwidth. Dominique Thômé, Product Manager Innovation Data TV, explains that “Unlike unicast technology, which broadcasts streams as many times as there are simultaneous connections, multicast should allow a single stream to be broadcast to thousands of people connected to a large 5G zone. This mutualization prevents bandwidth loss and, consequently, service interruptions from network congestion. Another advantage, which is of great importance to Orange, is that it consumes less energy and therefore contributes to the transition to a low-carbon economy.” Recognizing the Know-How of Carriers Experiments carried out in the Orange laboratory have yielded interesting results. A real-time readjustment of video quality to prevent network saturation resulted in each customer being able to watch TV with only five seconds of lag, confirming the feasibility of 5G live streaming on the go. In fact, faced with ever-increasing volumes, some broadcasters are beginning to turn to carriers to broadcast their TV streams. They need players that are able to transmit this huge amount of data while ensuring optimal quality, in order to avoid any latency problems. Thibaut Mathieu, Director of Innovation for Interactive & Multiscreen Services at Orange says that “Our pioneering approach toward 5G live streaming highlights the valuable role that network carriers play, right at the heart of the system, compared to OTT players (“over the top,” such as the Tech Giants), both in terms of technology and business. We will be able to get involved in data transmission, with optimal mutualization technology that will save money and energy.” These technologies are consistent with Orange’s CSR commitment, both in terms of carbon footprint (lower energy consumption) and inclusion (broadcasting the right information at the right time). More than Just Entertainment The challenge goes far beyond the traditional TV broadcasting market itself. In the context of the health crisis, brands have been quick to understand the value of live streams to generate sales and are starting to venture into “Live Shopping.” Originating from China, this large-scale approach to teleshopping consists of an online event where presenters, influencers or personalities showcase products live to a digital audience who are able to order products or ask questions. Live Shopping is attracting more and more brands around the world. “With hundreds of thousands of people connected at the same time, its large scale will certainly create capacity issues” says Thômé. “This is another case where mutualization will ensure quality of service.”

How 5G Is Revolutionizing Live Streaming

A group of friends watching a match on TV

With 5G Video Transmission, Live Truly Does Mean Live

Illustration du graphène

Graphene, an innovation accelerator for the optoelectronics of tomorrow