Biais algorithmiques

Les biais algorithmiques, qu'ils soient statistiques ou cognitifs, constituent des distorsions dans les modèles informatiques, provenant souvent de données d'entraînement déséquilibrées et/ou des équipes conceptrices biaisées. Ils affectent alors la justesse des décisions des machines.

A lire aussi sur Hello Future

décryptage de la lettre de Charles Quint - Cécile Pierrot à la bibliothèque

L’IA ouvre de nouveaux outils à la recherche en histoire

Découvrir
Une personne en blouse de laboratoire et lunettes de protection tient un microprocesseur dans sa main gantée. L'environnement est lumineux et moderne, suggérant un laboratoire de recherche ou de développement technologique.

Biais algorithmiques : le hardware influence également les réseaux de neurones

Découvrir
Trois personnes collaborent autour d'un ordinateur portable dans un environnement de bureau moderne. L'une d'elles, debout, explique quelque chose aux deux autres assis, qui semblent attentifs. Sur la table, on peut voir un ordinateur de bureau, une tablette et des accessoires de bureau. Des plantes et des bureaux sont visibles en arrière-plan.

FairDeDup : un outil pour aider les modèles d’IA à se libérer des biais sociaux

Découvrir
Une femme se tient dans un train, tenant un téléphone. Elle porte un manteau beige et une écharpe bleue et marron. L'intérieur du train est lumineux, avec des sièges et des barres de soutien en métal.

Un modèle mathématique souhaite aider l’IA à anticiper les émotions humaines

Découvrir
Parlons Tech, le podcast d'Hello Future, le site de la Recherche et de l'Innovation d'Orange

Parlons Tech 14 : comment l’IA aide-t-elle à apprendre ?

Découvrir
GettyImages - interview David Caswell

David Caswell : « Tous les journalistes doivent être formés à l’IA générative »

Découvrir